
KS-FX722R

JVC SERVICE MANUAL

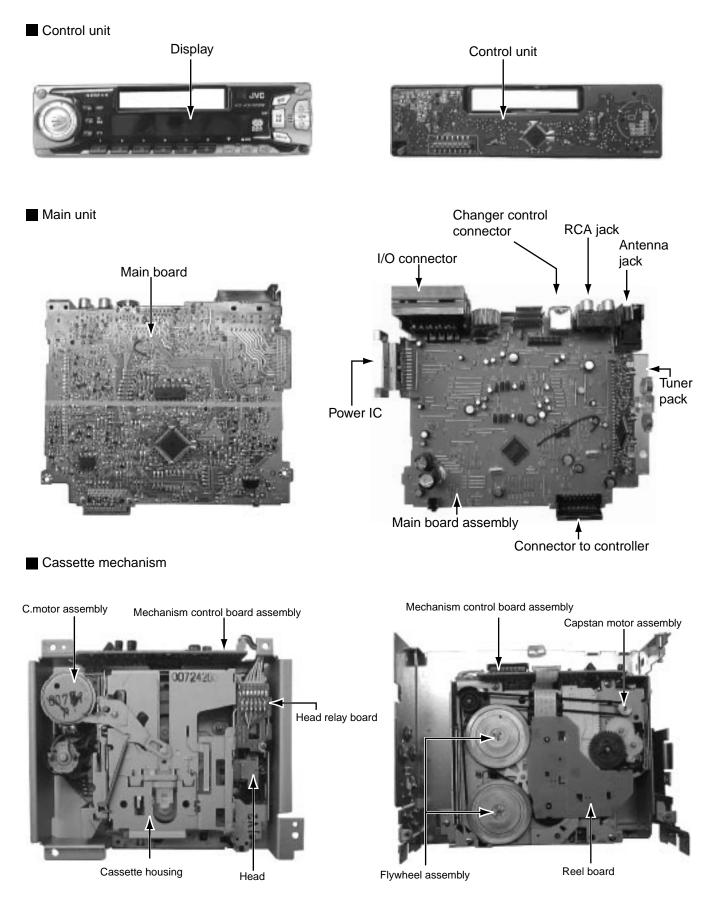
CASSETTE RECEIVER

KS-FX722R

Area Suffix

E ---- Continental Europe

Contents


Safety precaution	1-2
Location of main parts	1-3
Disassembly method	1-4

Adjustment method	1-10
Wiring connections	1-14
Description of major ICs	1-15

Safety precaution

CAUTION Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

Location of main parts

Disassembly method Removal of main parts

Enclosuer section

 Detaching the front panel unit (see Fig.2-1)
 Side the Release slide knob in the direction of arrow to detach the front panel unit.

(2) Removing the front chassis(see Fig.2-2)Disengage the four tabs in the right and left sides of unit and pull the front chassis forward to remove it.

(3) Removing the bottom cover(see Fig.2-3.2-4)

1.Remove one screw 2 retaining the IC to the heat sink. 2.Remove two screws 1 to remove the heat sink.

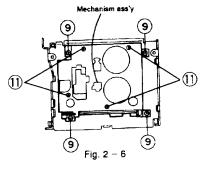
3.Turn the upside down, then insert and turn the

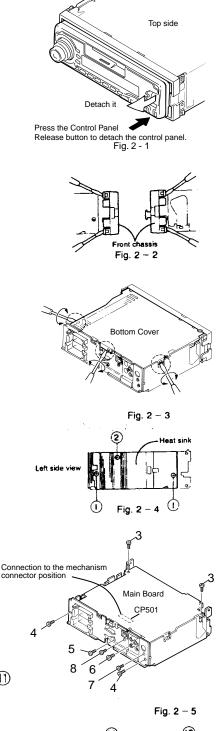
screwdriver to remove the bottom cover and protect sheet.

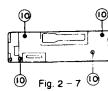
(4) Removing the main P.C.B.assembly (with rear panel) (see Fig.2-5)

- 1.Remove two screws 4 retaining the rear panel to the chassis.
- 2.Remove two screws 3 retaining the amp. P.C.B. assembly.

3.Lift up the main P.C.B. assembly to remove it. At this time, remove the connector CP501 connecting the main P.C.B assembly and mechanism assembly.

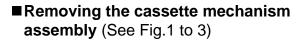

(5)Removing the rear panel(see Fig.2-5) Remove six screws retaining the jacks or the like. Remove one screw 5 to the IC bracket. Remove one screw 6 to remove the line-out jack. Remove one screw 7 to remove the antenna jack. Remove one screw 8 to remove the changer controller jack. (except KS-F530R)


(6)Mechanism assembly(see Fig.2-6)


1.Remove four mechanism mouting screws 9 retaining the mechanism assembly.

- 2.Remove four screws B retaining the cover.
- 3.Remove one screw which is the fixation of TOP COVER and the substrate.

(7)Front panel unit(see Fig.7) Remove four screws A retaining the rear cover.



<Removal of the cassette mechanism>

■Removing the mecha control P.W.B.

(See Fig.1 and 2)

- 1. For the 6pin harness extending from connector CN402 on the mecha control P.W.B, disconnect it from the head relay P.W.B.
- 2. Disconnect the card wire from connector CN403 on the mecha control P.W.B.
- 3. Remove the screw A attaching the mecha control P.W.B.
- 4. Move the tab a as shown in Fig.2 and remove the mecha control P.W.B. while moving it in the direction of the arrow.

- 1. Disconnect the 6pin harness from connector CN402 and the card wire from CN403 on the mecha control P.W.B. (Refer to Fig.1 and 2).
- 2. Remove the four screws B on the bottom of the cassette mechanism.

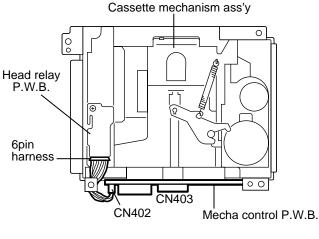
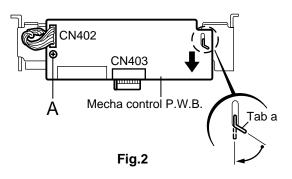



Fig.1

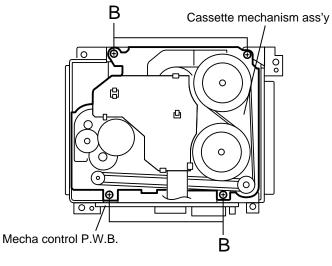
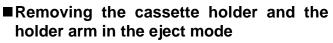


Fig.3

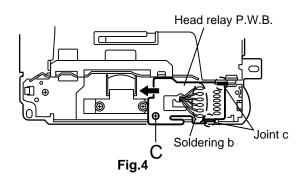
■Removing the head relay P.W.B.

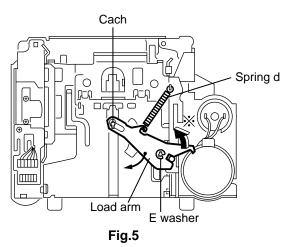
(See Fig.4)

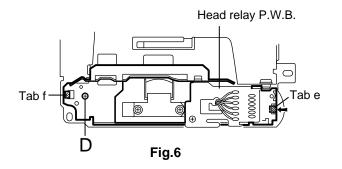

- 1. Unsolder the soldering b on the head relay P.W.B.
- 2. Remove the screw C attaching the head relay P.W.B.
- 3. Remove the head relay P.W.B. in the direction of the arrow while releasing the two joints c.

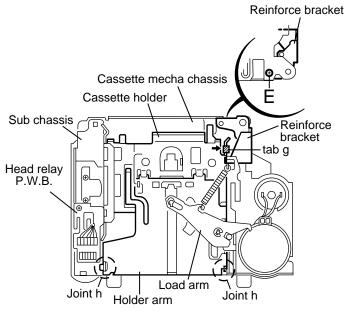
■Removing the load arm (See Fig.5)

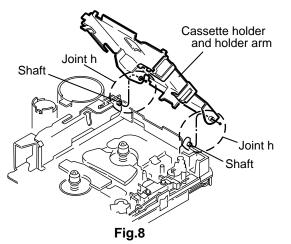
- 1. Remove the E washer attaching the load arm using a pincette or something like that and remove the spring d.
- 2. Move the part of the load arm marked \times upwards to release it from the axis of rotation. Then rotate the load arm in the direction of the arrow to remove it from the cach.

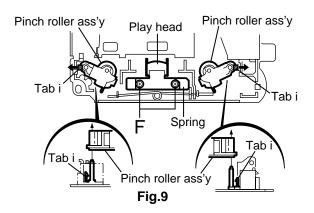

■Removing the sub chassis (See Fig.6)

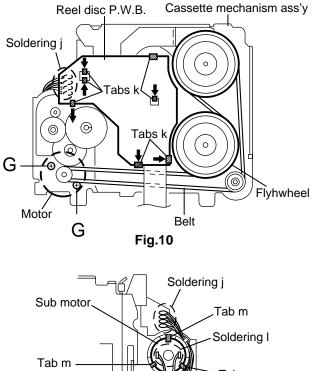

- * Prior to performing the following procedure, remove the head relay P.W.B.
- 1. Remove the screw D attaching the sub chassis.
- 2. Push the tab e in the direction of the arrow to detach the one side of the sub chassis. Then release the sub chassis from the tab f.




(See Fig.7 and 8)


- * Prior to performing the following procedure, remove the head relay P.W.B., the load arm and the sub chassis.
- 1. Remove the screw E attaching the reinforce bracket.
- 2. Remove the reinforce bracket.
- 3. Push the tab g fixing the cassette holder in the direction of the arrow and open the cassette holder and the holder arm upward until they stop at an angle of 45 degrees. Move the two joints h to the side and remove the cassette holder and the holder arm from the shaft.





Sub motor Tab m Tab m Load arm Fig.11

■ Removing the play head (See Fig.9)

- * Prior to performing the following procedure, remove the head relay P.W.B.and the sub chassis.
- 1. Remove the two screws F attaching the play head (The spring under the play head comes off at the same time).

Removing the pinch roller ass'y

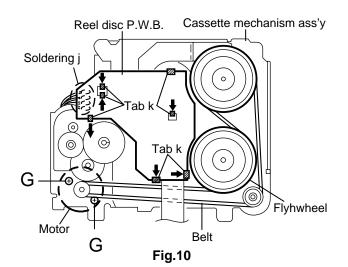
(See Fig.9)

- * Prior to performing the following procedure, remove the head relay P.W.B.and the sub chassis.
- 1. Push each tab i in the direction of the arrow and pull out the pinch rollers on both sides.

Removing the reel disc P.W.B.

(See Fig.10)

- 1. Unsolder the soldering j on the reel disc P.W.B.
- 2. Push the seven tabs k on the bottom of the cassette mechanism assembly in the direction of the arrow.


Removing the motor and the sub motor (See Fig.10 and 11)

- 1. Unsolder the two soldering I of the motor and the sub motor.
- 2. Release the sub motor from the three tabs m. Push the sub motor upward and pull out it.
- 3. Remove the belt on the bottom of the cassette mechanism assembly and remove the two screws G attaching the motor.
 - ATTENTION: The motors can be detached before removing the load arm.

■Removing the flywheel

(See Fig.10 and 12)

- 1. Prior to performing the following procedure, remove the head relay P.W.B, the load arm, the sub chassis, the cassette holder, the holder arm and the reel disc P.W.B.
- 2. Remove the belt on the bottom of the cassette mechanism ass'y.
- 3. Remove the slit washer attaching the flywheel on the upper side of the cassette mechanism ass'y and pull out the flywheel downward. Then remove another flywheel in the same way.
 - ATTENTION: When reassembling, make sure to use a new slit washer.

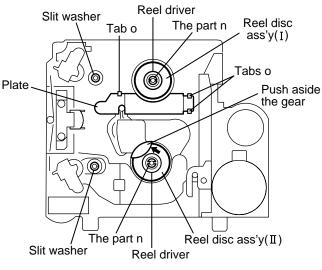


Fig.12

Shaft The part n Fig.13 Reel driver spring Reel table

Fig.14

■Removing the reel disc ass'y(I) (See Fig.12 to 14)

- * Prior to performing the following procedure, remove the head relay P.W.B, the load arm, the sub chassis, the cassette holder and the holder arm.
- 1. Disengage the part n inside of the reel driver which engages with the shaft, using a pincette or something like that. Then remove the reel driver from the shaft.
- 2. Remove the reel driver spring and the reel table.

■Removing the reel disc ass'y(II) (See Fig.12 to 15)

ATTENTION: Prior to performing the following procedure, remove the reel disc (I).

- 1. Release the plate from the three tabs o.
- 2. Push aside the gear over the reel table using a pincette or something like that.
- 3. Remove the reel disc ass'y (II) as with the reel disc ass'y (I).
 - ATTENTION: Do not break the front panel tab fitted to the metal cover.

Push aside the gear and reattach the reel disc Ass'y(I).

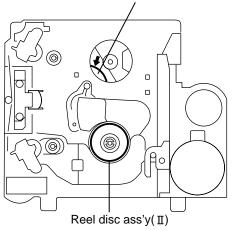


Fig.15

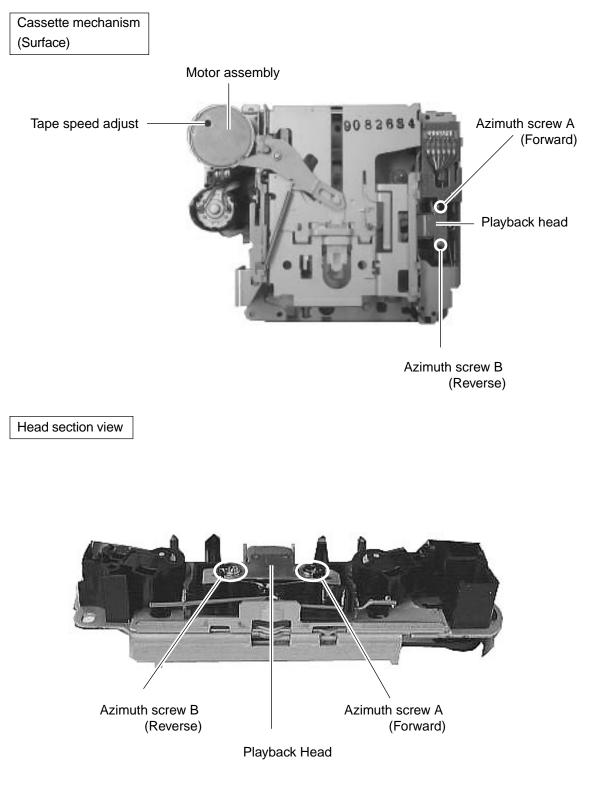
Adjustment method

Test instruments reqired for adjustment

- 1. Digital osclloscope(100MHz)
- 2. Frequency Counter meter
- 3. Electric voltmeter
- 4. Wow & flutter meter
- 5. Test Tapes

MC-109C	for TAPA CURL confirmation (without Padd type)
VT724	for DOLBY level measurement
VT739	For playback frequency measurement
VT712 Fo	or wow flutter & tape speed measurement
VT703	For head azimuth measurement
6. Torque gau	ge Cassette type for CTG-N
	(mechanism adjustment)

Measuring conditions(Amplifier section)


Power supply voltage	DC14.4V (10.5 - 16V)
Load impedance	. 4 Ω (2Speakers connection)
Line out	20kΩ

Standard volume position

Balance and Bass,Treble volume .Fader :Center(Indication"0") Loudness,Dolby NR,Sound,Cruise:Off Volume position is about 2V at speaker output with following conditions.Playback the test tape VT721.

AM mode	999kHz/62dB,INT/400Hz,30%
	modulation signal on recieving.
FM mono mode	97.5MHz/66dB,INT/400Hz,22.5kHz
	deviation pilot off mono
FM stereo mode	1kHz,67.5kHz dev. pilot7.5kHz dev.
Output level	0dB(1 μ V,50 Ω /open terminal)

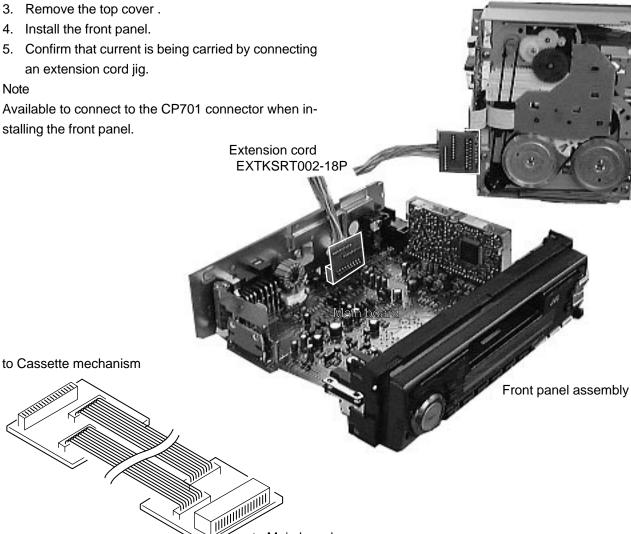
Arrangement of adjusting & test points

KS-FX722R

■ Information for using a car audio service jig

- 1. We're advancing efforts to make our extension cords common for all car audio products. Please use this type of extension cord as follows.
- 2. As a U-shape type top cover is employed, this type of extension cord is needed to check operation of the mechanism assembly after disassembly.
- 3. Extension cord : EXTKSRT002-18P (18 pin extension cord) For connection between mechanism assembly and main board assembly.

Cassette mechanism

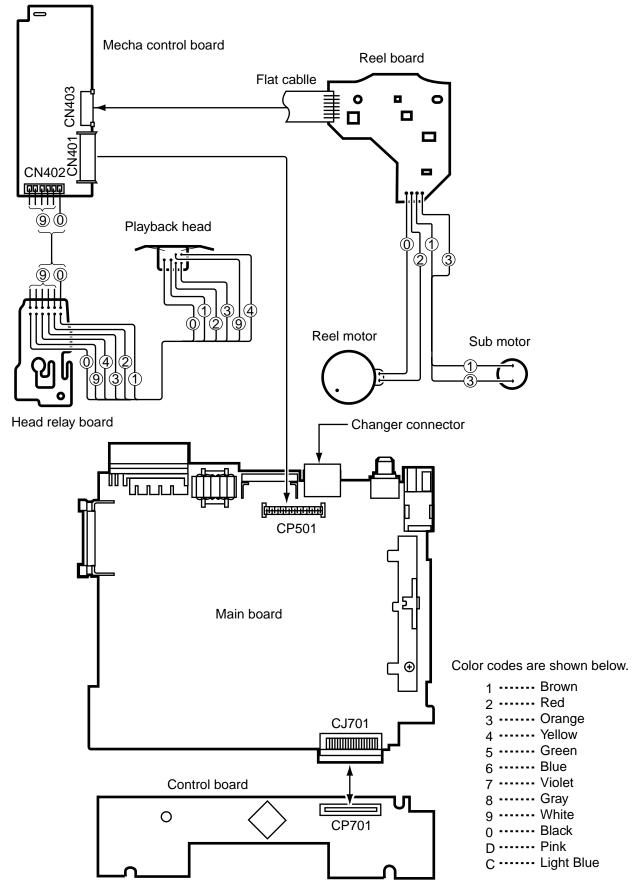

Check for mechanism driving section such as motor, etc..

Disassembly method

- 1. Remove the bottom cover.
- 2. Remove the front panel assembly.
- 3. Remove the top cover.
- 4. Install the front panel.
- 5. Confirm that current is being carried by connecting an extension cord jig.

Note

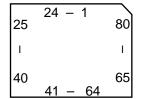
Available to connect to the CP701 connector when installing the front panel.


to Main board

EXTKSRT002-18P

■Mechanism adjustment section

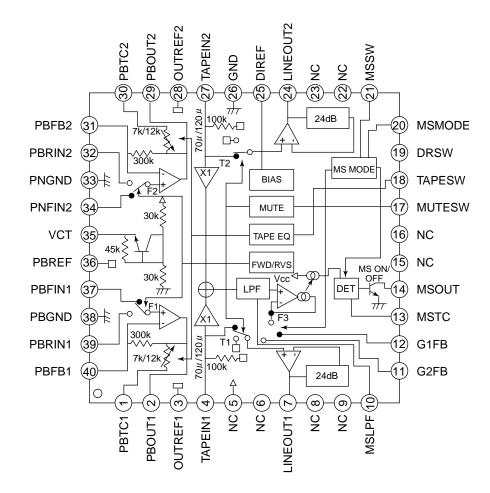
ltem	Adjusting & Confirmation Methods	Adjust	Std. Value
1. Tape running adjustment	 a) At Forward playmode, using mirror tape, make adjustment with Azimuth screw A and Azimuth screw B, without curl of 4 parts of head tape guide. b) At Reverse play mode, using mirror tape, make adjustment with Azimuth screw A and Azimuth screw B, without tape curl of 4 parts of head guide. c) At Forward / Reverse play mode, make confirmation of no tape curl of 4 parts of head tape guide. 		Azimuth screw A Azimuth screw B
2. Azimuth adjustment confirmation	 a) At forward play mode, make adjustment of peak of Lch / Rch output with Azimuth screw A. * For Oscilloscope litharge corrugation, set 45° as standard. b) At Reverse play mode, make adjustment of peak of Lch / Rch output with Azimuth screw B. * For Oscilloscope litharge corrugation, set 45 as standard. c) With AC volt meter confirm the difference of output for 4ch between Lch / Rch at forward play mode and Lch / Rch Reverse play mode being within 3.0dB. d) After operation, make confirmation of Lch / Rch azimuth output being within 1.0dB from adjustment value. 	0° Phas	50 45°
	OK Tape curl NG C HEAD TAPE		
2.Tape Speed and Wow & Flutter	 Check to see if the reading of the frequency counter & W ow flutter meter is within 2940-3090 Hz(FWD/REV), and less than 0.35% (JIS RMS). In case of out of specification, adjust the motor with a built- in volume resistor. 	Built-in volume resistor	Tape Speed 2940-3090Hz Wow&Flutter Less than 0.35% (JIS RMS)
3.Playback Frequency response	 Play the test tape (VT724 : 1kHz) back and set the volume position at 2V. Play the test tape (VT739) back and confirm 0±3dB at1kHz/ 10kHz and -4+2dB at 1kHz/63Hz. When 10kHz is out of specification, it will be necessary to read adjust the azimuth. 		Speaker out 1kHz/10kHz : 0dB±3dB, 63Hz/1kHz : -4dB+2dB,


Wiring connections

Description of major ICs

■UPD178018AGC584(IC701): System controller micon

1.Terminal Layout


2.Description

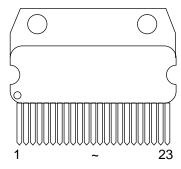
Pin No.	Symbol	I/O	Function	Pin No.	Symbol	I/O	Function
1	KEY0	Ι	Key input 0	43	DOLBY	0	Dolby NR output H:Dolby NR ON
2	KEY1	I	Key input 1	44	MS IN	I	Between tunes signal input
3	KEY2	Ι	Key input 2				H:Between tunes
4	LEVEL	Ι	Level meter input	45	I2CSCK	I/O	E-VOL IC control clock I/O
5	SM	Ι	Signal meter input	46	I2CDAO	0	E-VOL IC control data output
6	SQ	Ι	Signal quality input	47	I2CDAI	I	E-VOL IC control data input
7	LCDCE	0	Chip enable output to LCD driver	48	REEL	I	Reel rotation detect signal input
8	LCDDA	0	Data output to LCD driver	49	SUBMO-	0	Sub motor output -
9	LCDSCK	0	Clock output to LCD driver	50	SUBMO+	0	Sub motor output +
10	BUSI/O	0	J-BUS I/O switch output	51	MODE	Ι	Mode position detection input H:Non-mode
11	UNLOCK	0	PLL unlock output L:unlock H:lock				L:Mode position
12	BUSSI	I	J-BUS data input	52	TAPEIN	I	Cassette in detect input H:IN L:OUT
13	BUSSO	0	J-BUS data output	53	STBY	I	Standby detect input H:Eject side
14	BUSSCK	0	J-BUS clock output				L:Operation side
15 - 20	NC	-	Non connect	53	T-END	I	Tape end detect input 200ms L:tape end
21	GNDPORT	-	GND for port	54-59	NC	-	Non connect
22	VDDPORT	-	VDD for port	60	MUTE	0	L:Mute ON H:Mute OFF
23	NC	-	Non connect	61	POWER	0	Power supply output H:power ON
24	AFCK	0	AF check output L:AF check	62	TEL-MUTE	I	TEL-MUTE input
25	MONO	0	Monaural ON/OFF output H:Monaural ON	63, 64	NC	-	Non connect
26	FM/AM	0	Output for FM power supply H:FM Mode	65	ENC1	I	Encoder signal input
27	SEEK/STOP	0	Auto seek/Stop output H:Aut seek L:Stop	66	ENC2	I	Encoder signal input
28	NC	I	Non connect	67	ON	I	H:Operation mode L:Power save mode
29	IFC	I	FM middle frequency counter input	68	STOP	I	Stop mode input
30	VDDPLL	-	VDD for PLL	69	RDSCK	I	RDS clock input
31	OSC	Ι	FM/AM oscillation input	70	RDSDA	I	RDS data input
32	NC	-	Non connect	71	REMOCON	I	Remocon signal input (Not used)
33	GNDPLL	-	GND for PLL	72	DETACH	I	Detach input It is "L" of 200ms or more and
34	EO0	0	Error out output from change pump				an operation mode H:power save mode
35	EO1	0	Error out output from change pump	73	JBUS INT	I	J-BUS Interruption input
36	IC	-	Connect to Ground	74	REGCPU	-	Connects GND through the capacitor
37	SD/ST	Ι	Seek/Stop port H:SD input				of 0.1 F
			Seek/Stop port L:Stereo input	75	GND	-	To ground
38	STAGE	I	H:It is CD mode and there is REPEAT	76	X2	-	Crystal oscillator connection for system
			L:Does not exist	77	X1	-	clock oscillation
39	NC	-	Non connect	78	REGOSC	-	Connects GND through the capacitor
40	MOTOR	0	Main motor output H:At rotation				of 0.1 F
41	FF/REW	0	MS IC sensitivity switch output L:FF/REW	79	VDD	-	Power supply
42	F/R	0	FWD/REV change input H:FWD L:REV	80	NC	-	Non connect

CXA2559Q(IC401):Playback equalizer amplifier with music sensor

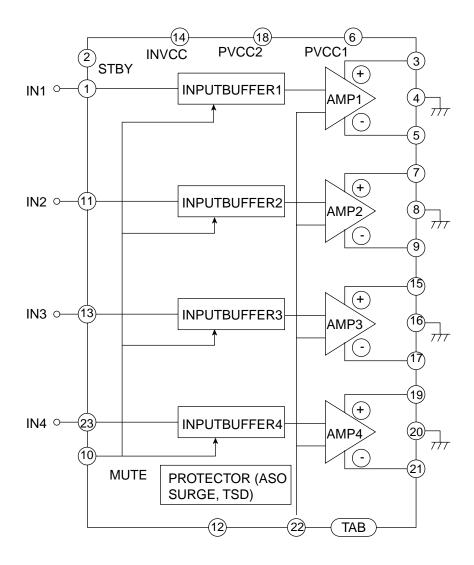
1.Pin layout

2.Blockdiagram

CXA2559Q 2/2


3.Pin function

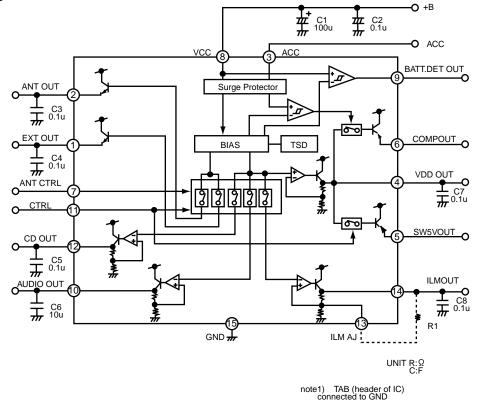
				9Q Z/Z
Pin No.	Symbol	I/O	Function	
1	PBTC1	-	Terminal of capacity of reproduction equalizer reproduction	
2	PBOUT1	0	Equalizer output terminal	
3	OUTREF1	0	Output standard terminal	
4	TAPEIN1	Т	Tape input terminal	
5	Vcc	-	Power supply terminal	
6	NC	-	Non connection	
7	LINEOUT1	0	Line-out output terminal	
8	NC	-	Non connection	
9	NC	-	Non connection	
10	MSLPF	-	Detection LPF terminal between tunes	
11	G2FB	-	Detection level set terminal between tunes	
12	GI1FB	-	Detection level set terminal between tunes	
13	MSTC	-	Time constant connection terminal for the detection between tunes	
14	MSOUT	0	Detection output terminal between tunes	
15	NC	-	Non connection	
16	NC	-	Non connection	
17	MUTESW	I	Mute function control terminal	
18	TAPESW	I	Reproduction equalizer control terminal	
19	DRSW	I	Head change control terminal	
20	MSMODE	Ι	Detection mode control terminal between tunes	
21	MSSW	1	Detection function control terminal between tunes	
22	NC	-	Non connection	
23	NC	-	Non connection	
24	LINEOUT2	0	Line-out output terminal	
25	DIREF	-	Resistance connection terminal for standard current setting	
26	GND	-	Earth terminal	
27	TAPEIN2	I	Tape input terminal	
28	OUTREF2	0	Output standard terminal	
29	PBOUT2	0	Reproduction equalizer output terminal	
30	PBTC2	_	Terminal of capacity of reproduction equalizer	
31	PBFB2	1	Reproduction equalizer return terminal	
32	PNRIN2	I	Reproduction equalizer input terminal	
33	PBGND	-	Reproduction equalizer system earth terminal	
34	PBFIN2	1	Reproduction equalizer input terminal	
35	VCT	0	Middle point terminal	
36	PBREF	0	Reproduction equalizer standard terminal	
37	PBFIN1	1	Reproduction equalizer input terminal	
38	PBGND	-	Reproduction equalizer system earth terminal	
39	PBRIN1	I	Reproduction equalizer input terminal	
40	PBFB1	1	Reproduction equalizer return terminal	


KS-FX722R

■ HA13158A (IC941) : Power amp

1. Pin layout

2. Block diagram



■ HA13164(IC961):REGULATOR

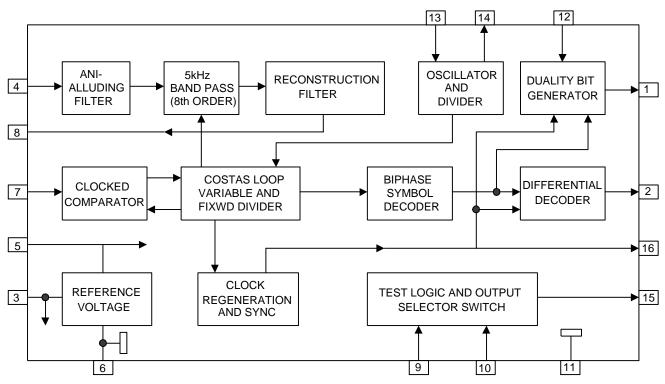
1.Terminal layout

2.Block diagram

3.Pin function

Pin No.	Symbol	Function
1	EXTOUT	Output voltage is VCC-1 V when M or H level applied to CTRL pin.
2	ANTOUT	Output voltage is VCC-1 V when M or H level to CTRL pin and H level
		to ANT-CTRL.
3	ACCIN	Connected to ACC.
4	VDDOUT	Regular 5.7V.
5	SW5VOUT	Output voltage is 5V when M or H level applies to CTRL pin.
6	COMPOUT	Output for ACC detector.
7	ANT CTRL	L:ANT output OFF, H:ANT output ON
8	VCC	Connected to VCC.
9	BATT DET	Low battery detect.
10	AUDIO OUT	Output voltage is 9V when M or H level applied to CTRL pin.
11	CTRL	L:BIAS OFF, M:BIAS ON, H:CD ON
12	CD OUT	Output voltage is 8V when H level applied to CTRL pin.
13	ILM AJ	Adjustment pin for ILM output voltage.
14	ILM OUT	Output voltage is 10V when M or H level applies to CTRL pin.
15	GND	Connected to GND.

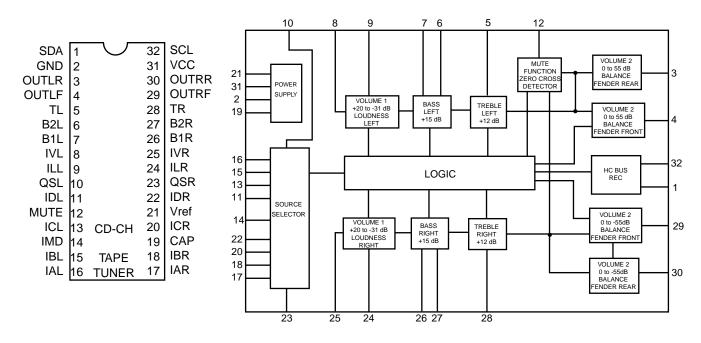
SAA6579T-X(IC761):RDS Detector


1.Terminal Layout

2.Pin Function

		\bigcirc	
QUAL	1	16	RDCL
RDDA	2	15	T75
Vref	3	14	osco
MUX	4	13	OSC1
VDDA	5	12	VDD
GND	6	11	GND
CIN	7	10	TEST
SCOUT	8	9	MODE

Pin No.	Symbol	I/O	Function	
1	QUAL	-	Non connect	
2	RDDA	0	RDS data output	
3	Vref	0	Reference voltage output	
4	MUX	Ι	Multiplex signal input	
5	VDDA	-	+5V Supply voltage for analog	
6	GND	-	Ground for analog part (0V)	
7	CIN	Ι	Sub carrier output of reconstruction filter	
8	SCOUT	0	Ground for digital part (0V)	
9	MODE	-	Ground for digital part (0V)	
10	TEST	-	Ground for digital part (0V)	
11	GND	-	Ground for digital part (0V)	
12	VDD	-	+5V supply voltage for digital part	
13	OSC1	Ι	Oscillator input	
14	OSC0	0	Oscillator output	
15	T75	-	Non connect	
16	RDCL	0	RDS clock output	


3.Block Diagram

TEA6320T-X (IC911) : E.volume

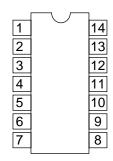
2.Block diagram

3.Pin functions

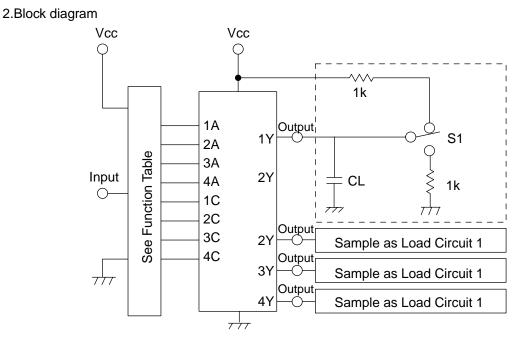
Pin No.	Symbol	I/O	Functions	Pin No.	Symbol	I/O	Functions
1	SDA	I/O	Serial data input/output.	17	IAR	Ι	Input A right source.
2	GND	-	Ground.	18	IBR	-	Input B right source.
3	OUTLR	0	output left rear.	19	CAP	-	Electronic filtering for supply.
4	OUTLF	0	output left front.	20	ICR	Т	Input C right source.
5	TL	I	Treble control capacitor left channel or input from an external equalizer.	21	Vref	-	Reference voltage (0.5Vcc)
6	B2L	-	Bass control capacitor left channel or output to an external equalizer.	22	IDR	-	Not used
7	B1L	-	Bass control capacitor left channel.	23	QSR	0	Output source selector right channel.
8	IVL	I	Input volume 1. left control part.	24	ILR	Ι	Input loudness right channel.
9	ILL	I	Input loudness. left control part.	25	IVR	I	Input volume 1. right control part.
10	QSL	0	Output source selector. left channel.	26	B1R	-	Bass control capacitor right channel
11	IDL	-	Not used	27	B2R	0	Bass control capacitor right channel or output to an external equalizer.
12	MUTE	-	Not used	28	TR	Ι	Treble control capacitor right channel or input from an external equalizer.
13	ICL	Ι	Input C left source.	29	OUTRF	0	Output right front.
14	IMO	-	Not used	30	OUTRR	0	Output right rear.
15	IBL	Ι	Input B left source.	31	Vcc	-	Supply voltage.
16	IAL	I	Input A left source.	32	SCL	Ι	Serial clock input.

■LC75823E (IC651) : LCD Driver

	1.	Pin	Layout	&	Symbol
--	----	-----	--------	---	--------

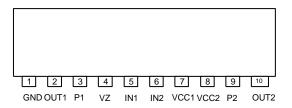

ayout & Symbol	. 85	41 2 43	
с д	CE OSC VSS VDD	INH VDD COM3 COM2 COM1 S52	S51 S50 S49
	<u> </u>	<u> </u>	
	62 61 60 59 58	3 57 56 55 54 53 52	
S1 0 + 1			48 +0 S48
S2 0 − 2			47
S3 0 - 3			46 + ○ S46
S4 0−4			45 – • S45
S5 0 − 5			44 +o S44
S6 0 + 6			43 + 0 S43
S7 0−7			42 +0 S42
S8 0+8			41 +0 S41
S9 0+9			40+0 S40
S10 0−10			
			39+0 S39
S11 0−11			38 – • S38
S12 0 + 12			37 +0 S37
S13 o <mark>+</mark> 13			36
S14 o <mark>→</mark> 14			35 – S35
S15 0 − 15			34 – S34
S16 0 + 16			33 – S33
17 18	19 20 21 22 23	3 24 25 26 27 28 29	9 30 31 32
18	0 0 7 0 0 0 7 0 0	4 5 9 7 8 6	30 32 32
રું રું	ი ი ი ი	S25 S25 S26 S27 S28 S28 S28 S28	ິ ເດີ ເດີ ເດີ ເດີ

2. Pin Function

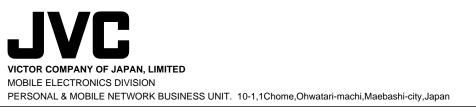

Pin No.	Symbol	I/O	Function	
1 to 52	S1 to S52	0	Segment output pins used to display data transferred	
			by serial data input.	
53 to 55	COM1 to COM3	0	Common driver output pins. The frame frequency is given	
			by : t0=(fosc/384)Hz.	
56	VDD		Power supply connection. Provide a voltage of between	
			4.5 and 6.0V.	
57	ĪNĦ	Ι	Display turning off input pin.	
			<u>INT</u> ="L" (Vss) off (S1 to S52, COM1 to COM3="L"	
			INT="H" (VDD) on	
			Serial data can be transferred in display off mode.	
58	VDDD1	Ι	Used for applying the LCD drive 2/3 bias voltage	
			externally.	
			Must be connected to VDD2 when a 1/2 bias drive scheme	
			is used.	
59	VDD2	Ι	Used for applying the LCD drive 1/3 bias voltage	
			externally.	
			Must be connected to VDD1 when a 1/2 bias drive scheme	
			is used.	
60	Vss		Power supply connection. Connect to GND.	
61	OSC	I/O		
			An oscillator circuit is formed by connecting an external	
	05		resistor and capacitor at this pin.	
62	CE		Serial data CE : Chip enable	
00			interface connection	
63	CL	I	to the controller. CL : Sync clock	
64	DI		DI : Transfer data	

■ HD74HC126FP-X (IC751) : Buffer

1.Terminal layout



Input		Outout	
С	Α	Y	
L	Х	Z	
Н	L	Н	
Н	Н	L	


■ LB1641 (IC402) : DC motor driver

1. Pin layout

2. Pin function

Input		Output		Mode	
IN1	IN2	OUT1	OUT2	Mode	
0	0	0	0	Brake	
1	0	1	0	CLOCKWISE	
0	1	0	1	COUNTER-CLOCKWISE	
1	1	0	0	Brake	

